Part Number Hot Search : 
N54LS 24SH3 77G4223M BAS116RF FMMT491 MABS3 UMC5NT1G NSF8DT
Product Description
Full Text Search
 

To Download AOW14N50 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  AOW14N50/aowf14n50 500v, 14a n-channel mosfet general description product summary v ds i d (at v gs =10v) 14a r ds(on) (at v gs =10v) < 0.38 ? 100% uis tested 100% r g tested symbol v ds v gs i dm i ar e ar e as peak diode recovery dv/dt dv/dt t j , t stg t l symbol r ja r cs r jc * drain current limited by maximum junction temperature. a w w/ o c c mj v/ns c maximum case-to-sink a maximum junction-to-case mj c/w c/w derate above 25 o c parameter AOW14N50 aowf14n50 maximum lead temperature for soldering p ur p ose, 1/8" from case for 5 seconds 500 i d 5 28 278 11 14* 11* the AOW14N50 & aowf14n50 have been fabricated using an advanced high voltage mosfet process that is designed to deliver high levels of performance and robustness in popular ac-dc applications.by providing low r ds(on) , c iss and c rss along with guaranteed avalanche capability these parts can be adopted quickly into new and existing offline power supply designs. v units parameter absolute maximum ratings t a =25c unless otherwise noted AOW14N50 aowf14n50 600v@150 drain-source voltage v 30 gate-source voltage t c =100c a 56 pulsed drain current c continuous drain current t c =25c 14 avalanche current c 540 single plused avalanche energy g 1080 6 repetitive avalanche energy c junction and storage temperature range maximum junction-to-ambient a,d power dissipation b p d t c =25c thermal characteristics 300 -55 to 150 2.2 0.22 0.45 -- units c/w 65 0.5 65 4.5 g d s top view t o-262f bottom view top view t o-262 bottom view g d s g d s g d s g d s rev2: july 2010 www.aosmd.com page 1 of 6
AOW14N50/aowf14n50 symbol min typ max units 500 600 bv dss / ? tj 0.5 v/ o c 1 10 i gss gate-body leakage current 100 n v gs(th) gate threshold voltage 3.3 4.2 4.5 v r ds(on) 0.29 0.38 ? g fs 20 s v sd 0.71 1 v i s maximum body-diode continuous current 14 a i sm 56 a c iss 1531 1914 2297 pf c oss 134 191 250 pf c rss 9.5 16 23 pf r g 1.75 3.5 5.3 ? q g 34 42.8 51 nc q gs 7.4 9.3 11 nc q gd 10 20.3 31 nc t d(on) 44 53 ns t r 84 101 ns t d(off) 92 110 ns t f 50 60 ns t rr 289 347 ns q rr 4.93 6 c this product has been designed and qualified for the consumer market. applications or uses as critical components in life support devices or systems are not authorized. aos does not assume any liability arising out of such applications or uses of its products. aos reserves the right to improve product design, functions and reliability without notice. body diode reverse recovery time static drain-source on-resistance v gs =10v, i d =7a reverse transfer capacitance i f =14a,di/dt=100a/ s,v ds =100v v gs =0v, v ds =25v, f=1mhz switching parameters i s =1a,v gs =0v v ds =40v, i d =7a forward transconductance electrical characteristics (t j =25c unless otherwise noted) static parameters parameter conditions v ds =5v i d =250 a v ds =400v, t j =125c zero gate voltage drain current i dss zero gate voltage drain current v ds =500v, v gs =0v id=250a, vgs=0v diode forward voltage turn-off delaytime v gs =10v, v ds =250v, i d =14a, r g =25 ? gate resistance v gs =0v, v ds =0v, f=1mhz turn-off fall time total gate charge v gs =10v, v ds =400v, i d =14a gate source charge gate drain charge bv dss body diode reverse recovery charge i f =14a,di/dt=100a/ s,v ds =100v maximum body-diode pulsed current input capacitance output capacitance turn-on delaytime dynamic parameters turn-on rise time a v ds =0v, v gs =30v v drain-source breakdown voltage i d =250a, v gs =0v, t j =25c i d =250a, v gs =0v, t j =150c a. the value of r ja is measured with the device in a still air environment with t a =25c. b. the power dissipation p d is based on t j(max) =150c, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. c. repetitive rating, pulse width limited by junction temperature t j(max) =150c, ratings are based on low frequency and duty cycles to keep initial t j =25c. d. the r ja is the sum of the thermal impedence from junction to case r jc and case to ambient. e. the static characteristics in figures 1 to 6 are obtained using <300 s pulses, duty cycle 0.5% max. f. these curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsi nk, assuming a maximum junction temperature of t j(max) =150c. the soa curve provides a single pulse rating. g. l=60mh, i as =6a, v dd =150v, r g =25 ? , starting t j =25c rev2: july 2010 www.aosmd.com page 2 of 6
AOW14N50/aowf14n50 typical electrical and thermal characteristic s 40 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 1.0e+00 1.0e+01 1.0e+02 0.0 0.2 0.4 0.6 0.8 1.0 v sd (volts) figure 6: body-diode characteristics (note e) i s (a) 25c 125c 0 5 10 15 20 25 30 0 5 10 15 20 25 30 v ds (volts) fig 1: on-region characteristics i d (a) v gs =5.5v 6v 10v 6.5v 0.1 1 10 100 246810 v gs (volts) figure 2: transfer characteristics i d (a) -55c v ds =40v 25c 125c 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0 5 10 15 20 25 30 i d (a) figure 3: on-resistance vs. drain current and gate voltage r ds(on) ( ? ) v gs =10v 0 0.5 1 1.5 2 2.5 3 -100 -50 0 50 100 150 200 temperature (c) figure 4: on-resistance vs. junction temperature normalized on-resistance v gs =10v i d =7a 0.8 0.9 1 1.1 1.2 -100 -50 0 50 100 150 200 t j (c) figure 5:break down vs. junction temparature bv dss (normalized) rev2: july 2010 www.aosmd.com page 3 of 6
AOW14N50/aowf14n50 typical electrical and thermal characteristic s 0 3 6 9 12 15 0 102030405060 q g (nc) figure 7: gate-charge characteristics v gs (volts) v ds =400v i d =14a 1 10 100 1000 10000 0.1 1 10 100 v ds (volts) figure 8: capacitance characteristics capacitance (pf) c iss c oss c rss 0.01 0.1 1 10 100 1 10 100 1000 v ds (volts) i d (amps) figure 9: maximum forward biased safe operating area for AOW14N50 (note f) 10 s 10ms 1ms 0.1s dc r ds(on) limited t j(max) =150c t c =25c 100 s 0.01 0.1 1 10 100 1 10 100 1000 v ds (volts) i d (amps) figure 10: maximum forward biased safe operating area for aowf14n50 (note f) 10 s 10ms 1ms 0.1s dc r ds(on) limited t j(max) =150c t c =25c 100 s 1s 10s 0 3 6 9 12 15 18 0 25 50 75 100 125 150 t case (c) figure 11: current de-rating (note b) current rating i d (a) rev2: july 2010 www.aosmd.com page 4 of 6
AOW14N50/aowf14n50 typical electrical and thermal characteristic s 0.001 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 10 100 pulse width (s) figure 12: normalized maximum transient thermal impedance for AOW14N50 (note f) z jc normalized transient thermal resistance d=t on /t t j,pk =t c +p dm .z jc .r jc r jc =0.45c/w in descending order d=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse t on t p d sin g le pulse 0.001 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 10 100 pulse width (s) figure 13: normalized maximum transient thermal impedance for aowf14n50 (note f) z jc normalized transient thermal resistance d=t on /t t j,pk =t c +p dm .z jc .r jc r jc =4.5c/w in descending order d=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse single pulse t on t p d rev2: july 2010 www.aosmd.com page 5 of 6
AOW14N50/aowf14n50 - + vdc ig vds dut - + vdc vgs vgs 10v qg qgs qgd char ge gate charge test circuit & waveform - + vdc dut vdd vgs vds vgs rl rg vgs vds 10% 90% resistive switching test circuit & waveforms tt r d( on) t on t d(of f ) t f t of f vdd vgs id vgs rg du t - + vdc l vgs vds id vgs bv i unclamped inductive switching (uis) test circuit & waveforms ig vgs - + vdc dut l vds vgs vds is d is d diode recovery tes t circuit & waveforms vds - vds + i f ar dss 2 e = 1/2 li di/dt i rm rr vdd vdd q = - idt t rr ar ar rev2: july 2010 www.aosmd.com page 6 of 6


▲Up To Search▲   

 
Price & Availability of AOW14N50

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X